Bioluminescence imaging of glucose in tissue surrounding polyurethane and glucose sensor implants.

نویسندگان

  • Heather L Prichard
  • Thies Schroeder
  • William M Reichert
  • Bruce Klitzman
چکیده

BACKGROUND The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors.

Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-senso...

متن کامل

In Vivo Analytical Performance of Nitric Oxide-Releasing Glucose Biosensors

The in vivo analytical performance of percutaneously implanted nitric oxide (NO)-releasing amperometric glucose biosensors was evaluated in swine for 10 d. Needle-type glucose biosensors were functionalized with NO-releasing polyurethane coatings designed to release similar total amounts of NO (3.1 μmol cm(-2)) for rapid (16.0 ± 4.4 h) or slower (>74.6 ± 16.6 h) durations and remain functional ...

متن کامل

Clinical evaluation of soft tissue surrounding prosthesis supported by implants

Clinical evaluation of soft tissue surrounding prosthesis supported by implants Dr. A. Fazel* - Dr. M. Rismanchian** *- Associate Professor of Prosthodontics Dept. - Faculty of Dentistry - Tehran University of Medical Sciences. **- Assistant Professor of Prosthodontics Dept. – Faculty of Dentistry - Isfahan University of Medical Sciences. Background and Aim: Nowadays, reconstruction and replace...

متن کامل

Enhancing the sensitivity of needle-implantable electrochemical glucose sensors via surface rebuilding.

OBJECTIVE Needle-implantable sensors have shown to provide reliable continuous glucose monitoring for diabetes management. In order to reduce tissue injury during sensor implantation, there is a constant need for device size reduction, which imposes challenges in terms of sensitivity and reliability, as part of decreasing signal-to-noise and increasing layer complexity. Herein, we report sensit...

متن کامل

Progress toward the development of an implantable sensor for glucose.

The development of an electrochemically based implantable sensor for glucose is described. The sensor is needle-shaped, about the size of a 28-gauge needle. It is flexible and must be implanted subcutaneously by using a 21-gauge catheter, which is then removed. When combined with a monitoring unit, this device, based on the glucose oxidase-catalyzed oxidation of glucose, reliably monitors gluco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of diabetes science and technology

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 2010